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• Item response theory (IRT) models are the most 
commonly used psychometric models in educational 
measurement 

• Well-known phenomena occurs when a student guesses 
the correct answer to an item that is more difficult than 
his or her ability 
» Yields model-data misfit for the 2-PL 

• 3-PL IRT model models guessing 
• This study introduces a new IRT model 

» Accounts for guessing with only 2 item parameters 

Introduction 



• The 3-PL  
» Estimates three parameters per item: 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 
» More accurately portrays item response process than 2-PL if 

guessing is occurring  
 In theory, the model is preferred for data from multiple choice tests 

» Will fit better than the 2-PL when guessing is occurring if it has 
enough data to estimate the additional parameter per item 
 In practice, there are some limitations 
 The c parameter is difficult to estimate 

» Most common recommendation: use 2-PL—even if guessing is 
occurring— if the sample is less than 1000 examinees  
 
 

Three-Parameter IRT Model  



• A variety of strategies can be used to estimate the 3-PL 
with smaller samples 
» Constrain all c’s to be equal (estimate a common lower-

asymptote) 
» Set difficult-to-estimate c’s equal to the mean of the estimable c’s 
» Put a Bayesian prior on c 

• This study’s strategy was to develop a new model that 
could provide a lower asymptote for an item response for 
small-scale assessments without having to estimate any 
additional item parameters 
 

 
 
 

Guessing Parameter  Estimation Strategies 



𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 = 𝑐𝑖 + (1 − 𝑐𝑖)
exp(𝑎𝑖 𝜃𝑒−𝑏𝑖 )

1+exp(𝑎𝑖 𝜃𝑒−𝑏𝑖 )
  

2-PA IRT Model 

𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 = exp(𝜆𝑖+exp(𝛿𝑖𝜃𝑒))
1+exp(𝜆𝑖+exp(𝛿𝑖𝜃𝑒))

  

3-PL 
• Models the conditional probability an examine e provides 

the correct response to item i as a function of continuous 
ability (𝜃𝑒) as (omitting the scaling constant 1.7):  
 
 

2-PL 
• The 3-PL where ci = 0 for every item: 

𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 = exp(𝑎𝑖 𝜃𝑒−𝑏𝑖 )
1+exp(𝑎𝑖 𝜃𝑒−𝑏𝑖 )

  

2-PA 
 
 
 

 
 



• 𝛿𝑖 is akin to discrimination 𝛼𝑖 in the 2-PL and 3-PL models 
» As 𝛿𝑖 increases, the slope of the item response function (on the 

logit scale) increases  

• 𝜆𝑖 is the akin to the intercept −𝑎𝑖𝑏𝑖 in the 2-PL model 
» As the intercept increases, the item becomes more difficult 
» Also uniquely determines the lower asymptote: 

lim
𝜃→−∞

(𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 ) =
exp 𝜆𝑖

1 + exp 𝜆𝑖
 

 

2-PA IRT Model 
𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 = exp(𝜆𝑖+exp(𝛿𝑖𝜃𝑒))

1+exp(𝜆𝑖+exp(𝛿𝑖𝜃𝑒))
  



Empirical Data Analysis 



• Data  
• Estimation 

» Custom MCMC estimation algorithm written in Fortran 
• Model Fit 

» Relative Fit (Deviance Information Criterion) 
» Absolute Fit (Yen’s 𝑄1 (1981)) 

• Parameter estimates 
» Item Characteristic Curves (ICCs) 
» Ability distribution 
» Standard Error of Ability 

Results Overview 



• Test of American History 
» Administered to a random sample of 670 incoming freshman 

at a mid-sized Southeastern university 
» 40 item multiple choice test 
» 4 alternatives per item 
 

Data 



• Convergence assessed by  
» Gelman and Rubin’s (1992) 𝑅� 

 % of converged parameters, by type 
 
 
 
 

» Chain Plots 
 Examples:  

Estimation 

Model Slope Intercept c 

2-PA 97.5 95 - 

3-PL 80 85 77.5 

2-PL 85 90 - 

𝜹𝟐 𝝀𝟐 



• Deviance Information Criterion (DIC) for relative model-
data fit 
» Appropriate criterion when MCMC estimation is used  
 

 
 
 

• Yen’s 𝑄1 fit statistic for item-level absolute fit  
 

Model Fit 

Model Loglikelihood Parameters DIC 

2-PA -12494.4  80 23187.43  

3-PL -12446.3 120 23024.31 
2-PL -12465.5 80 23075.65 

Model Number of Misfitting Items  
(p<.05) 

2-PA 9 

3-PL 9 

2-PL 3 



ICCs: First 4 Items 

  

  

2-PL 

3-PL 

2-PA 

𝑸𝟏 fit?  
= yes 
 = no 
 



ICCs: High/Low Discrimination (𝛿) 

  

  

2-PL 

3-PL 

2-PA 
High 𝜹 

Low 𝜹 

𝑸𝟏 fit?  
= yes 
 = no 
 



ICCs: High/Low Intercept (𝜆) 

  

  

2-PL 

3-PL 

2-PA 
High 𝝀 

Low 𝝀 

𝑸𝟏 fit?  
= yes 
 = no 
 



ICCs: Range of Asymptotes 

  

  

2-PL 

3-PL 

2-PA 

𝑸𝟏 fit?  
= yes 
 = no 
 



ICCs: Worst Fitting Items 

  

  

2-PL 

3-PL 

2-PA 

𝑸𝟏 fit?  
= yes 
 = no 
 



Ability Estimates  

3-PL 

2-PA 



Ability and Standard Error of Ability 



From a Two-Option Data Set 



• We are not sure where to go from here 
» Simulation study may answer some of our concerns 

• Remaining questions: 
» Is ability on the same scale? 
» Should we use a base other than e? 

 Perhaps 2? 
 We could estimate a base, 𝛽:  

𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 = exp(𝜆𝑖+𝛽𝛿𝑖𝜃𝑒))
1+exp(𝜆𝑖+𝛽𝛿𝑖𝜃𝑒))

  
» Or we could estimate the base as as an item parameter, 𝛽𝑖:  

𝑃 𝑋𝑒𝑒 = 1|𝜃𝑒 =
exp(𝜆𝑖 + 𝛽𝑖

𝛿𝑖𝜃𝑒))
1 + exp(𝜆𝑖 + 𝛽𝑖

𝛿𝑖𝜃𝑒))
  

 
 Then we’re back to 3 parameters! 
 
 
 
 
 
 

 

What’s next? 



Thank you! 

If you have questions or comments, 
please feel free to email me:  

bradshlp@jmu.edu 
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