A Two Parameter Asymptote IRT Model

Laine Bradshaw

Assessment & Measurement, James Madison University

Jonathan Templin

Research, Evaluation, Measurement & Statistics, University of Georgia

Introduction

- Item response theory (IRT) models are the most commonly used psychometric models in educational measurement
- Well-known phenomena occurs when a student guesses the correct answer to an item that is more difficult than his or her ability
 - » Yields model-data misfit for the 2-PL
- 3-PL IRT model models guessing
- This study introduces a new IRT model
 - » Accounts for guessing with only 2 item parameters

Three-Parameter IRT Model

- The 3-PL
 - » Estimates three parameters per item: a_i , b_i , and c_i
 - » More accurately portrays item response process than 2-PL if guessing is occurring
 - In theory, the model is preferred for data from multiple choice tests
 - » Will fit better than the 2-PL when guessing is occurring if it has enough data to estimate the additional parameter per item
 - In practice, there are some limitations
 - The c parameter is difficult to estimate
 - » Most common recommendation: use 2-PL—even if guessing is occurring— if the sample is less than 1000 examinees

Guessing Parameter Estimation Strategies

- A variety of strategies can be used to estimate the 3-PL with smaller samples
 - » Constrain all c's to be equal (estimate a common lowerasymptote)
 - » Set difficult-to-estimate c's equal to the mean of the estimable c's
 - » Put a Bayesian prior on c
- This study's strategy was to develop a new model that could provide a lower asymptote for an item response for small-scale assessments without having to estimate any additional item parameters

2-PA IRT Model

3-PL

• Models the conditional probability an examine e provides the correct response to item i as a function of continuous ability (θ_e) as (omitting the scaling constant 1.7):

$$P(X_{ei} = 1 | \theta_e) = c_i + (1 - c_i) \frac{\exp(a_i(\theta_e - b_i))}{1 + \exp(a_i(\theta_e - b_i))}$$

<u>2-PL</u>

• The 3-PL where $c_i = 0$ for every item:

$$P(X_{ei} = 1 | \theta_e) = \frac{\exp(a_i(\theta_e - b_i))}{1 + \exp(a_i(\theta_e - b_i))}$$

2-PA

$$P(X_{ei} = 1 | \theta_e) = \frac{\exp(\lambda_i + \exp(\delta_i \theta_e))}{1 + \exp(\lambda_i + \exp(\delta_i \theta_e))}$$

2-PA IRT Model

$$P(X_{ei} = 1 | \theta_e) = \frac{\exp(\lambda_i + \exp(\delta_i \theta_e))}{1 + \exp(\lambda_i + \exp(\delta_i \theta_e))}$$

- δ_i is akin to discrimination α_i in the 2-PL and 3-PL models
 - » As δ_i increases, the slope of the item response function (on the logit scale) increases
- λ_i is the akin to the intercept $-a_ib_i$ in the 2-PL model
 - » As the intercept increases, the item becomes more difficult
 - » Also uniquely determines the lower asymptote:

$$\lim_{\theta \to -\infty} (P(X_{ei} = 1 | \theta_e)) = \frac{\exp(\lambda_i)}{1 + \exp(\lambda_i)}$$

Empirical Data Analysis

Results Overview

- Data
- Estimation
 - » Custom MCMC estimation algorithm written in Fortran
- Model Fit
 - » Relative Fit (Deviance Information Criterion)
 - » Absolute Fit (Yen's Q_1 (1981))
- Parameter estimates
 - » Item Characteristic Curves (ICCs)
 - » Ability distribution
 - » Standard Error of Ability

Data

- Test of American History
 - » Administered to a random sample of 670 incoming freshman at a mid-sized Southeastern university
 - » 40 item multiple choice test
 - » 4 alternatives per item

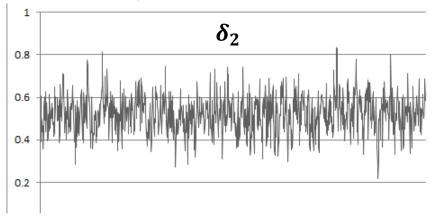
Estimation

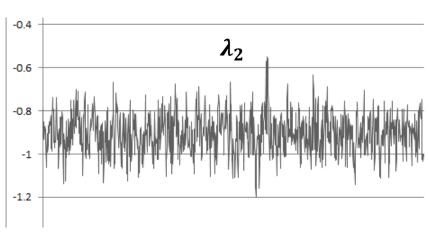
- Convergence assessed by
 - » Gelman and Rubin's (1992) \widehat{R}
 - % of converged parameters, by type

Model	Slope	Intercept	С
2-PA	97.5	95	-
3-PL	80	85	77.5
2-PL	85	90	-

» Chain Plots

• Examples:





Model Fit

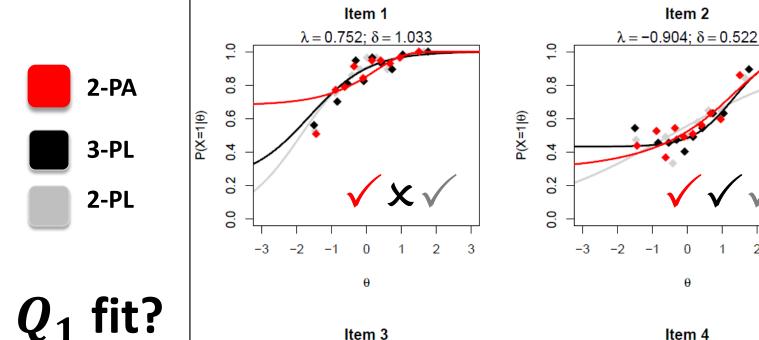
- Deviance Information Criterion (DIC) for relative modeldata fit
 - » Appropriate criterion when MCMC estimation is used

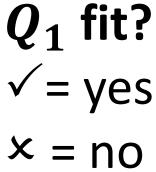
Model	Loglikelihood	Parameters	DIC
2-PA	-12494.4	80	23187.43
3-PL	-12446.3	120	23024.31
2-PL	-12465.5	80	23075.65

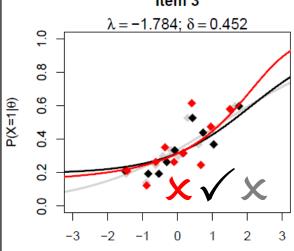
• Yen's Q_1 fit statistic for item-level absolute fit

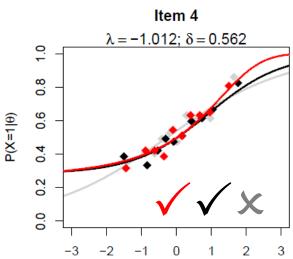
Model	Number of Misfitting Items (p<.05)
2-PA	9
3-PL	9
2-PL	3

ICCs: First 4 Items





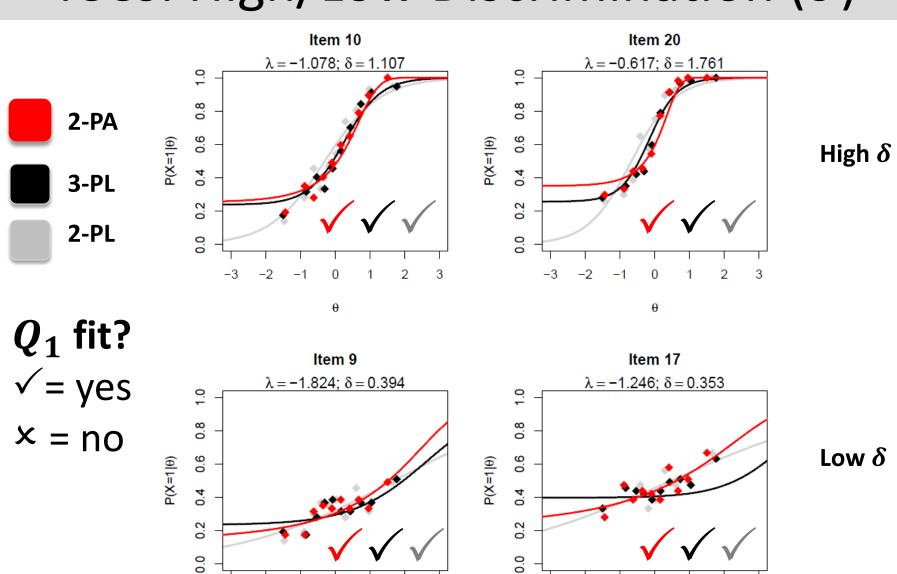




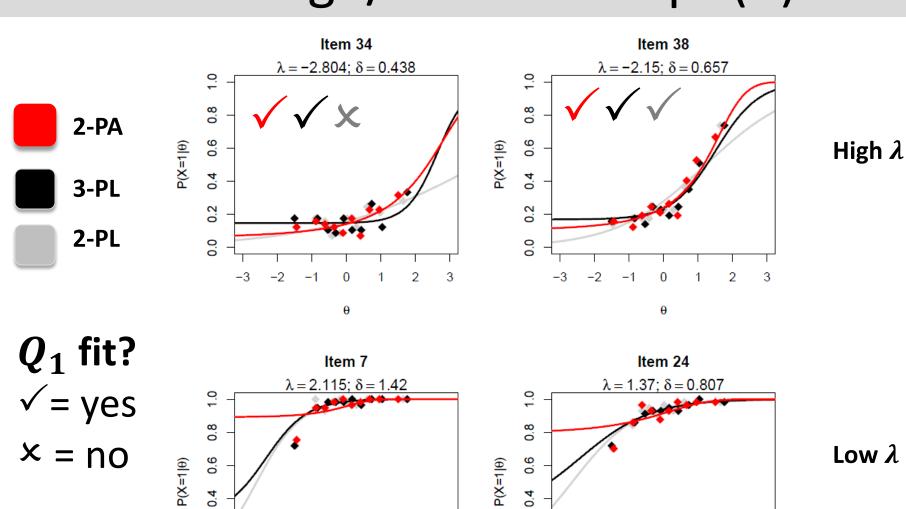
Item 2

θ

ICCs: High/Low Discrimination (δ)



ICCs: High/Low Intercept (λ)



XXV

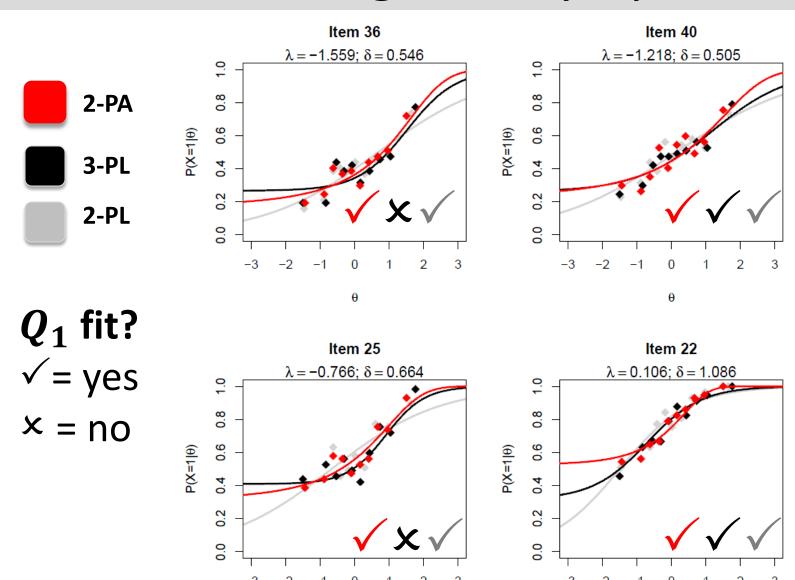
0.2

0.0

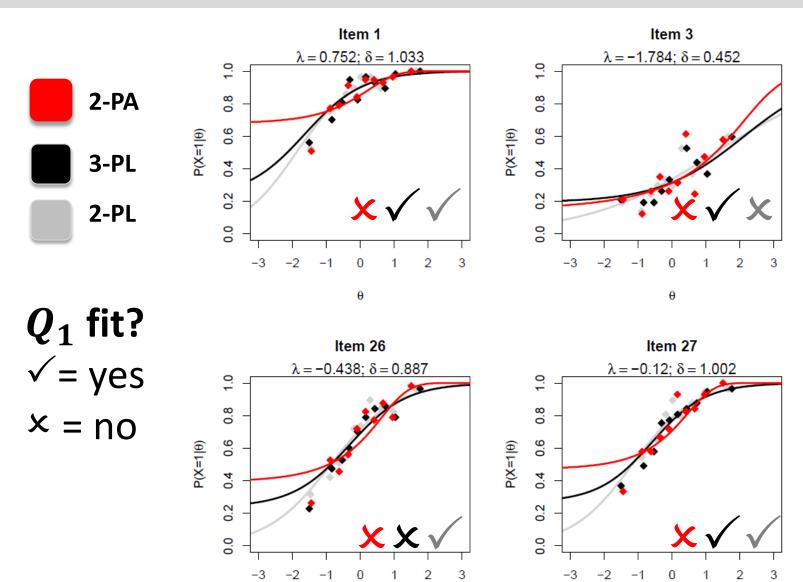
0.2

0.0

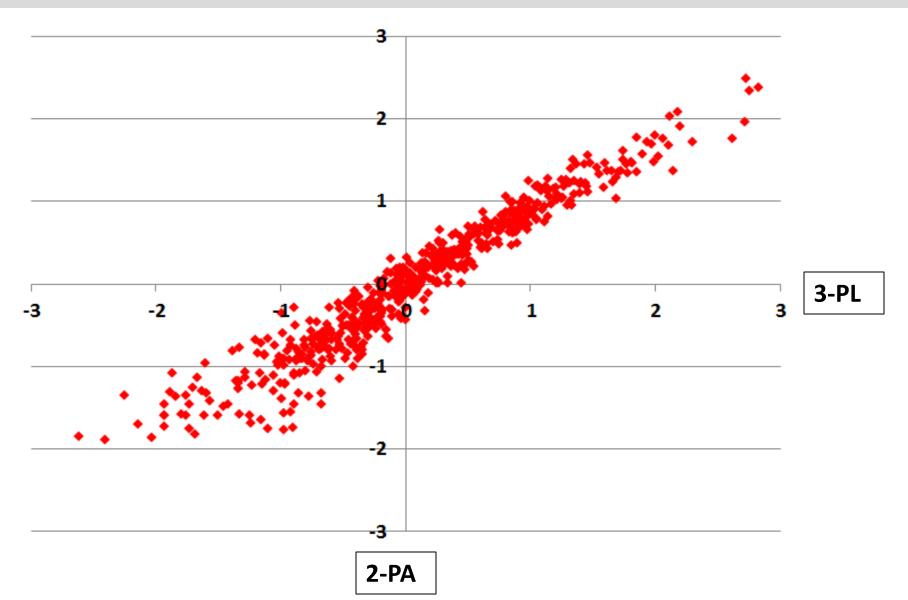
ICCs: Range of Asymptotes



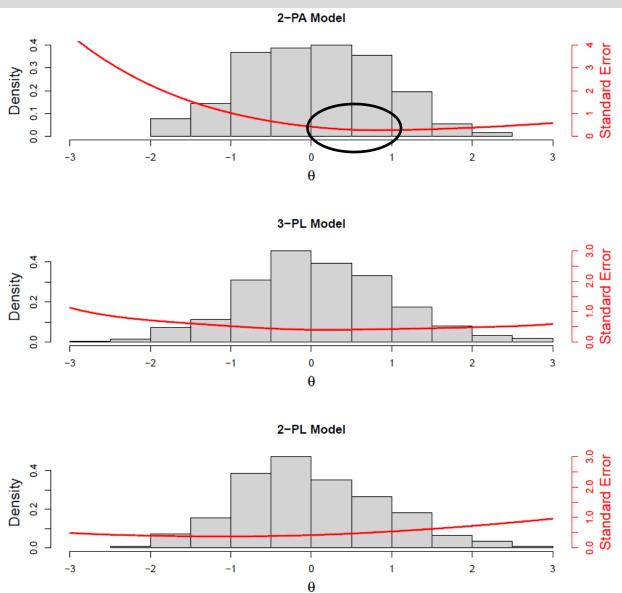
ICCs: Worst Fitting Items



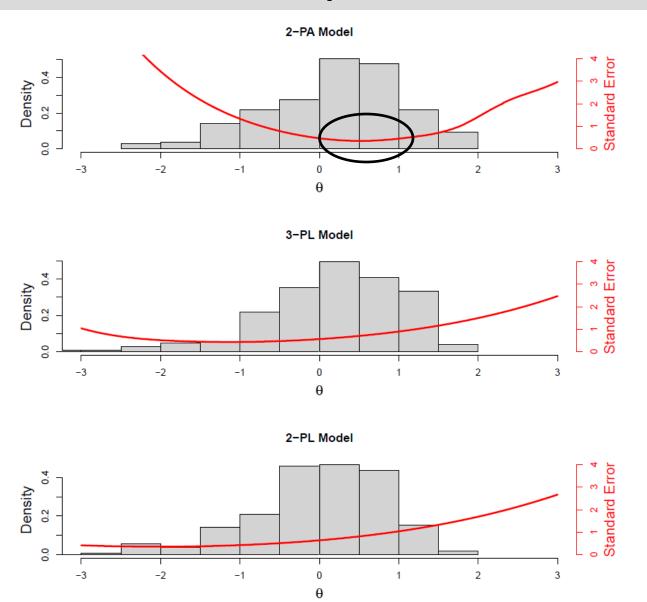
Ability Estimates



Ability and Standard Error of Ability



From a Two-Option Data Set



What's next?

- We are not sure where to go from here
 - » Simulation study may answer some of our concerns
- Remaining questions:
 - » Is ability on the same scale?
 - » Should we use a base other than e?
 - Perhaps 2?
 - We could estimate a base, β :

$$P(X_{ei} = 1 | \theta_e) = \frac{\exp(\lambda_i + \beta^{\delta_i \theta_e})}{1 + \exp(\lambda_i + \beta^{\delta_i \theta_e})}$$

» Or we could estimate the base as as an item parameter, β_i :

$$P(X_{ei} = 1 | \theta_e) = \frac{\exp(\lambda_i + \beta_i^{\delta_i \theta_e}))}{1 + \exp(\lambda_i + \beta_i^{\delta_i \theta_e}))}$$

Then we're back to 3 parameters!

Thank you!

If you have questions or comments, please feel free to email me: bradshlp@jmu.edu